中德电子-2021 广告 雅玛西-2021 广告 第24届(华南)中国磁性元器件行业智能生产暨 高性能材料应用技术峰会3 广告 2025中国电子热点解决方案创新峰会4 广告

新型嵌入式系统电源监控模块设计

2011-06-23 11:55:24 来源:网络

摘要:  在嵌入式系统硬件设计中,通常在电源模块的交流输入端为供电提供过压保护,但在直流输出端一般只是采用稳压器件为系统提供正常的供电,并提供一个发光二极管检测直流电压的有无,并未过多的考虑系统工作时电源模块输出电压是否准确以及能否让各种器件正常运行。

关键字:  嵌入式系统,  稳压器,  电源模块

  嵌入式系统对供电电源要求比较严格.通常都需采用独立的稳压器件供电。在嵌入式系统硬件设计中,通常在电源模块的交流输入端为供电提供过压保护,但在直流输出端一般只是采用稳压器件为系统提供正常的供电,并提供一个发光二极管检测直流电压的有无,并未过多的考虑系统工作时电源模块输出电压是否准确以及能否让各种器件正常运行。针对这一现象,这里给出一种应用于某嵌入式系统的电源监控模块的设计方案以及具体的硬件实现。

  2 系统整体设计思想

  嵌入式系统中供电电压过高会损坏器件,而过低集成电路则导致系统无法正常工作。因此电源监控模块设计需遵循以下原则:

  (1)保护原则电压过高,必然会烧坏器件;有时,电压过低,由于系统设计的复杂性,可能不仅会影响器件的正常工作,还会对器件造成一定损害。因此,电源监控模块不仅需要实现过压保护,还需要实现欠压保护。

  (2)预警原则在系统工作前,需要对供电电压进行预检测,判断电压是否符合设定值,并能给出正确的判断指示。同时,在系统工作时,也应该能够实时的对工作电压进行检测判断,同步指示系统供电是否正常。

  在某无线通信设备便携式检测平台系统中,采用ARM与FPGA相结合的嵌入式主控模块,主控模块需+5 V、+3.3 V、+2.5 V和+1.8 V 4种供电电压,电源监控模块应能提供两种主要功能:在系统启动前能够对电源供电模块的工作状况进行自检,并能实时的指示电源模块的工作状态;对系统中的其他模块提供实时的欠压/过压保护。

  3 主要器件选择及工作原理

  3.1 电源.件

  该系统设计的电源模块采用新型电压监测器件ADM1184。该器件能够精确监测嵌入式处理器核心器件的工作电压,以确保其在容许的电压范围内运行。ADM1184将精确度改善至低于±0.8%.使其符合目前对于处理器监测需要的要求,因此该器件能广泛用于如便携式无线通信检测平台等敏感且具有高可靠度的应用装置中,使得系统更安全、更具可靠性,从而达到最优的性能。同构型的多重电压监测器与序列发生器通常只能达到大于±1.5%的精确度位准,要监测在低容错度以及较窄运作波段下进行低电压核心电源供应的处理器,难以符合需求。ADM1184拥有4组具有0.6 V参考电压的精密比较器,用来监测独立的电压通道。该电压监测器件可以在2.7~5.5 V的供电电源范围中工作,且具有4组能够加以编程设置的输入,以监测外部不同电压位准。

  3.2 稳压器件

  考虑到系统各模块所需+5 V电源的电流在2 A,因此需要选择一种输出电流较大的稳压器,产生+5 V电压的器件,这里选用LM2676,如图1所示。

  LM2676是一种开关型集成稳压器,可提供一个驱动能力达3 A,可逐级下降的开关稳压器的所有功能,具有良好的线性和负载调节特性:使用一只低导通电阻的DMOS电源开关获得高输出效率;固定输出3.3 V,5 V和12 V电压,或调节输出。

  LM2676系列器件内置热击穿保护电路、限流电路和开关控制输入,可将供电降低至50μA静态电流的休眠状态。该器件具有150 mΩ的DMOS输出开关电阻,输出电压额定偏差为+2%,时钟频率偏差为+11%,效率高达94%,使用方便。该系统中,主电源为5 V电源,从5 V到3.3 V、2.5 V的转换一般使用LDO(低压线性稳压器件)。在此选用MIC29302器件,这是一种高精度,低漏电稳压器件,其输出电流达800mA,可满足系统电源要求,其主要电路如图2所示。

  3.3 模块工作原理

  图3为ADM1184监视4个电源通道的一个应用。在该应用中,ADM1184依次开启3个稳压器,当所有的电源供电稳定后产生供电正常信号来开启控制器。

  图3中,3.3 V主电源通过引脚VCC给器件供电。引脚VIN1监视3.3 V主电源。OUT1连接到第1个稳压器的使能端,在VIN1脚电压到达0.6 V之前,该引脚接地,使得稳压器件不工作。当系统的主电压达到2.9 V时,VIN1引脚检测到0.6 V。使得OUT1引脚电平置高,驱动稳压器件1的使能脚变高,器件正常输出。该稳压器输出的2.5 V电压被VIN2脚检测到,当该电压超过管脚设定的门限电平后,OUT2引脚电平置高,

本文为哔哥哔特资讯原创文章,未经允许和授权,不得转载,否则将严格追究法律责任;
Big-Bit 商务网

请使用微信扫码登陆