中德电子-2021 广告 雅玛西-2021 广告

一款多功能逆变电源的设计方案

2013-09-09 16:32:23 来源:http://ic.big-bit.com/|3 点击:1773

函数信号发生器,是实验教学中常用的设备。能产生不同频率和电压等级的波形:方波信号,三角波,正弦信号波形。近年兴起的一种新的DDS技术,即直接数字频率合成技术。但是他们都为小信号波,没有功率输出,不能带一定的负载。

本文提出的多功能$逆变电源,主电路采用二重$单相全桥逆变器结构,输出的电压波形对给出的参考波形跟踪,有功率输出,能带一定的负载。控制采用加入微分环节的滞环控制,完全实现数字化控制。

主电路设计

多功能$逆变电源原理如图1,有两部分组成:主电路和控制部分。其中主电路的参考信号,可以与计算机通信或者其他电路得到。

 

 

图1:多功能逆变电源原理

在主电路的设计上借鉴了多重逆变器结构,采用了二重单相全桥逆变器连接。原理图如图2.两个逆变器直流侧电压不相同,主逆变器的直流侧电压为Udc,从逆变器的直流侧电压为3Udc.输电电压波形共有9个电平组成:±4Udc,±3Udc,±2Udc,±Udc,0.由于输出电平的数量多于单个$逆变器,输出波形较好。主逆变器工作为较高频率,从逆变器工作频率较低,极大的降低开关损耗。在参考波形变化缓慢阶段,只需要主逆变桥工作,就能很好的跟踪参考信号;当参考信号变化相当快速的时刻,需要辅助逆变桥和主逆变桥同时工作,快速精确跟踪参考信号。

 

 

图2:二重级联单相全桥逆变器拓扑

控制设计

在控制部分采用滞环完全数字化控制。滞环控制响应速度快、准确度较高、跟踪精度高,输出电压不含特定频率的谐波分量等特点,能够使用DSP实现数字化控制。对于主电路的主逆变器和从逆变器采用滞环控制。

 

 

图3:滞环控制原理

如图3所示,主开关的滞环宽度为h,从开关管的滞环宽度为hs,且hs>h.主逆变器一直工作,开关管V1和V4;V2和V3交替导通关断。从逆变器有三种工作状态。在t1~t2时刻,误差电压并没有超过从逆变器的滞环宽度,只需要主逆变器工作,四个开关管都关断;在t3时刻,误差电压△u>hs,开关管 VS2和VS3导通,开关管VS1和VS4关断;t4时刻误差电压-△u<-hs开关管VS1和VS4导通,开关管VS2和VS3关断。

考虑到跟随突变信号时跟随困难的情况,在滞环控制器前引入了微分环节,如图4所示,以改善跟随效果。

 

 

图4:带微分环节的滞环控制

引入微分环节后,根据图1和图2所示,对主逆变器滞环控制策略为:

 

 

式中:T为微分时间常数。

上述不等号取等号情况,则实际环宽h′为:

 

 

当稳态或者电压变化率不大时微分环节很小,可忽略,h′较大;当电压突变时微分环节将很大,不能忽略,h′较小,u迅速跟踪Uref.加入微分环节实际上就是改变滞环宽度。从$逆变器滞环控制也采用相同原理。

仿真

利用Matlab,根据所提出主电路和控制设计建立模型。对图1的二重级联单相全桥逆变器进行仿真,负载为阻感型。

参考信号为正弦波,周期T为0.02s,最大值为50V.输出电压波形如图5所示。

 

 

图5:参考信号为正弦波输出电压

参考信号为三角波,电压最大值为70V,输出电压如图6所示。

 

 

图6:参考信号为三角波输出电压

从图5和图6看出,当参考信号为变化不是很快的正弦波和三角波信号时,逆变电源的输出电压能精确跟踪。

参考信号为阶梯波,输出电压波形如图7所示。

 

 

图7:参考信号为方波输出电压

参考电压信号为方波时,电压值为70V.输出电压波形如图8所示。

 

 

图8:参考信号为方波输出电压

当参考信号为阶梯波或方波,方波和阶梯波有突变时刻,逆变电源的输出电压也能很好跟踪参考信号。从图7和图8看出,输出电压是质量很好的阶梯波和方波,可作为电压源使用。

结论

多功能逆变电源,主电路采用二重级联单相全桥逆变器结构,输出的电压波形对给出参考波形跟踪,有功率输出,能带一定的负载,可直接作为电压源使用。控制采用加入微分环节的滞环控制,完全实现数字化控制。最后通过Matlab仿真,证实设计方案的多功能逆变电源是可行的。


本文由大比特收集整理(www.big-bit.com)

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我们联系,我们将及时更正、删除,谢谢。
Big-Bit 商务网

请使用微信扫码登陆