有关“测量”的最新话题,搜索3325 次
随着智能电网和配电自动化技术的不断发展,对电流测量设备的准确性、灵活性及可靠性的要求日益提高。传统开合式电流互感器具有较高的测量精度,但其结构刚性大,尺寸较大,难以满足狭小空间的安装需求;而罗氏线圈由于其柔性结构,具备较好的安装适应性,但在低电流条件下误差较大,输出稳定性不足。
随着智能电网和配电自动化技术的飞速发展,适用于电网改造的传统电流传感器在测量准确度、安装灵活性及环境适应性方面的局限性逐渐显现。为了应对这一挑战,本文提出了一种新型柔性电流互感器的设计方案。
功率变换器向高频、高效、高功率密度发展,磁性元件磁特性测量计算面临挑战,正弦波测量计算误差大、激励源容量不足,该如何解决?方波给出了答案!
在高频高功率要求下,如何要求、评价、测量、计算、应用磁芯成为行业痛点问题。本文将对此进行探讨,希望起到抛砖引玉作用,共同克服瓶颈问题,带动产业进步。
不可否认,磁性元器件的发展已搭乘上第三代半导体材料发展的快车。芯片电感、一体成型电感、磁集成技术等新技术新产品层出不穷,但材料始终是掣肘行业发展的难题,如何更为深刻和全面地认识磁性材料,让其跟上行业奔跑的快车是行业亟待去正视和解决的问题。
在磁芯损耗测量中量热法通常用于验证电气测量方法的精度。
随着第三代半导体功率器件的迅速发展,功率变换器中更高频磁元件的应用将越来越普及,国内外频率高达MHz的磁元件损耗评测量鲜有研究。现有高频绕组损耗测量方法难以体现磁元件实际工况对绕组损耗的影响。
一款新的基于SCR(Semiconductor Control Rectifier半导体控制整流器)的高脉冲电流处理能力而开发的用于功率电感测量的脉冲测试系统。 该测试系统可以通过高达10KA的脉冲电流对功率电感进行饱和性能测试和功耗测试,而且不会产生热应力。 测试系统具有短路保护功能,可以避免因输出短路造成对测试系统的损坏。
备受行业瞩目的磁性材料居里温度测量方法将于11月1日正式实施!这一标准有何特别之处?企业应该如何应对?
随着开关电源频率的不断提升,磁性元件中导体的涡流损耗成为设计时的重点关注部分。本文以平面型电感器为研究对象,将导体的涡流损耗分解为集肤效应损耗和邻近效应损耗,利用数值计算的方法探索集肤效应损耗的影响因素,并借助半近似解析式获取电感器中的邻近效应损耗。