有关“谐振”的最新话题,搜索267 次
为了扩充容量,LLC谐振变换器采用三相交错并联拓扑,从而有三个变压器,不但影响变换器的体积和效率,而且由于三个变压器的参数不对称,引起不均流问题;传统三相磁集成变压器采用磁轭非闭合EE型结构,其三相参数也不对称。
对两相并联LLC谐振变换器中磁集成变压器进行分析和设计,分析传统“EE”型磁集成变压器所存在的问题,提出新型“E+E”型磁集成变压器结构,建立电路和磁路模型,完成变压器参数设计,对新型“E+E”型和传统“EE”型磁集成变压器进行电磁场仿真对比,制作变压器实验样机。
面向未来大数据中心第三代和绿色化供电系统提出了高变比LLC谐振变换器,为了解决高变比LLC谐振变换器的变压器绕组匝数过多、绕组结构复杂这一技术瓶颈背后的核心科学问题,本文提出一种“十”字型低匝比平面变压器。
为了实现高电压变比,LLC谐振变换器中采用的变压器绕组匝数过多,使其在采用平面变压器及PCB绕组方案时, PCB绕组匝数和层数过多,结构复杂,制造成本成倍提高,且效率降低。
动态无线供电技术具有无磨损、维护成本低等优点,在自动化分拣系统中具有良好的应用价值。论文针对单轨动态无线供电系统,在考虑整流桥前的电流断续及副边谐振电路寄生参数的影响下,分析了整流电压与负载的关系,指出因负载变化导致的整流电压大范围波动给后级稳压器的建模和闭环参数设计带来了挑战。
为了扩充容量,LLC谐振变换器多采用两相或多相交错并联结构。然而,由于交错并联LLC谐振变换器中各并联相的谐振元件参数(主要包括谐振电感和谐振电容)不可避免地存在偏差,使得各相LLC谐振变换器之间的电压增益不相等,导致各相电流不均衡。
含有中继线圈的三线圈WPT系统可以提高系统的传输距离和传输效率,但在现有的补偿网络结构分析中未考虑非相邻线圈间的耦合影响(交叉耦合效应)。本文基于耦合电感模型分析并建立了传统自感谐振式SSS补偿结构的三线圈WPT磁耦合系统的数学模型。
谐振式无线电能传输系统的磁耦合系统损耗与其线圈设计和补偿网络有关,该文根据电路理论分析磁耦合系统在S/SP补偿结构下的系统谐波特性,建立谐波影响下的S/SP补偿基波阻抗等效模型并提出基于线圈匝数的优化设计方法。
为了解决双向DC/DC变换器输入、输出电压范围过窄的问题,提出了一种高增益对称双向LCLC谐振变换器。
在大功率应用场合中,常将多相LLC谐振变换器并联运行,由于LLC谐振变换器的增益对元器件参数非常敏感,因此并联运行时,各相间由于器件参数不一致引起的均流问题较为突出。