有关“涡流”的最新话题,搜索90 次
平面螺旋线圈因其结构简单,在无线充电系统中应用极为广泛。品质因数作为衡量线圈充电性能的重要参数,对于提升无线充电系统的整体效能具有关键作用。因此,本文将品质因数作为优化目标,深入研究了在谐振频率下,基于磁场分布特性和高频涡流损耗原理的绕组损耗和铁芯损耗的交联特性。
随着开关电源频率的不断提升,磁性元件中导体的涡流损耗成为设计时的重点关注部分。本文以平面型电感器为研究对象,将导体的涡流损耗分解为集肤效应损耗和邻近效应损耗,利用数值计算的方法探索集肤效应损耗的影响因素,并借助半近似解析式获取电感器中的邻近效应损耗。
随着变压器工作频率的提高,集肤效应和邻近效应引起的绕组涡流损耗也随之提高。将空心管型绕组应用于中频变压器,不但可以提高绕组材料利用率,同时能改善变压器的散热效率。
华源磁业开发出高性能PC97材,具有极高的磁感应强度Bs和低的功率及涡流损耗,适用于高性能电子变压器和电感器,助力新能源产业发展。
我们日常生活中经常会应用到电源,而磁芯材料在电源中的应用也时常起到关键,但是,有一个问题时常困扰大家,那就是电感磁芯容易产生损耗,目前来看,磁芯易于出现的三种损耗分别有磁滞、涡流及剩余损耗,那么它们缘何而来呢?
电感磁芯损耗由三部分组成,1、磁滞损耗、2、涡流损耗、3、剩余损耗;什么是电感,电感就是把电能转换为磁能而存储起来的电子元器件。
开关电源磁性元件一般指变压器和电感。与变压器和电感相关的损耗关键有三种:磁滞损耗、涡流损耗和电阻损耗。变压器的主要作用是提供初级和次级线圈的电气设备防护,使输出工作电压或升或降,传输动能。
本文介绍了LLC谐振变换器中两种矩阵变压器模型的集成原理。通过对变压器绕组原副边的电流进行傅里叶分解,分析其在不同次谐波下电流的路径。最后利用Dowll一维模型对绕组损耗进行理论计算,并与软件仿真Maxwell在涡流场场的仿真结果进行对比。
变压器的损耗主要有铜损和铁损两部分。铜损是当电流流过变压器绕组时转变为热能而造成的损耗,由于绕组一般都是由铜线缠绕而成,因此称为铜损。铁损主要是铁芯(或磁芯)中的磁滞损耗和涡流损耗。那什么是磁滞损耗和涡流损耗呢?
在Dowell对高频功率电感绕组损耗理论分析与验证的基础上,讨论了高频功率电感在电流为三角波时绕组损耗的一种计算方法;以连续工作模式的BUCK转换器中使用的高频功率电感为例进行说明。本计算方法仅考虑由趋附效应与邻近效应引起的电感绕组高频损耗,未考虑由漏磁通引起的涡流损耗。