有关“磁芯结构”的最新话题,搜索4 次
由于智能设备的小型化、轻量化发展趋势,对电感器件的集成性和稳定性提出了更高的需求。本文根据电感器件中磁路完整性原理,结合对气隙-电感值关系的研究,对磁芯结构进行优化,设计了弧形面契合的可变形磁芯,以达到高空间利用率、低磁损耗,降低工作电感波动。
高频变压器设计时选择磁芯结构应考虑的因素:降低漏磁和漏感,增加线圈散热面积,有利于屏蔽,线圈绕线容易, 装配接线方便等。
本文讲述了铁氧体材料的主要使用频率范围、工作环境和现有各种磁芯结构的优缺点。应用磁学原理、计算方法定性地给出电感系数与磁芯结构尺寸的关系,提供了科学设计电子变压器、电感器的依据。
在非接触电能传输系统中,变压器的耦合系数直接关系到系统的变换效率。为提高非接触变压器的耦合系数,同时减小其体积、质量,给出改进的变压器磁芯结构及绕组排列方法,并结合电磁场仿真结果,提出新型非接触变压器的磁路模型。根据耦合程度不同,将总磁通分为无耦合、部分耦合和全耦合3部分。基于变压器磁路模型和该磁通分类方法,给出各部分磁阻和变压器耦合系数的量化计算方法,并进一步给出变压器优化设计方法,提出边沿扩展
本文将磁性元件绕组集成在多个磁芯组合的磁路上,称之为阵列式集成磁件。详细地分析了四磁芯结构阵列式两电感集成磁件的集成原理,分析了五种磁芯组合情况下两电感的耦合度大小,并作了有限元仿真分析验证,同时将其中对角开气隙的磁件应用于两通道交错并联变换器,仿真分析和实验结果证明了理论分析的正确性和集成磁件的实用性。组合磁芯结构由于磁芯间气隙的存在相对于传统整体磁芯降低了磁芯的集中发热点,同时增加了磁芯的散热