有关“电感集成”的最新话题,搜索1 次
三相逆变电路在中大功率电源中应用广泛。当逆变电感采用分离元件时,体积大、重量重;而采用常规磁集成方案和接线方式时,又面临纹波大的问题。针对以上问题,论文提出了一种新型的三相五柱耦合集成逆变电感,将三颗电感集成在一对平行的条状磁轭上。
传统上一般以共模抑流圈的漏感作为差模电感,但在差模噪声比较大的电路拓扑往往还需要一级单独的差模滤波器,这会造成磁件体积比较大。在优化了变压器后的共模噪声比较小情况下,可用差模电感来替换感值较大的共模抑流圈,再用小感值的共模抑流圈实现对共模噪声抑制效果相同。
提出一种新型的3D(三维)磁集成技术方案,将至少两颗电感集成在一个四柱的平面磁芯上。基于3D集成技术,可解决磁芯上除绕线柱外的各个部位磁通抵消或减小问题,提高电源的功率密度并提升效率,同时集成电感可简化电源装配,节省成本。最后,成功应用在一款功率1200W/13.5V输出的车用D2D电源上。
本文介绍了CMOS有源电感集成电路的设计和优化。这种有源电感器采用Silterra0.13μm技术,并使用Cadence Virtuoso和Spectre RF进行仿真。该有源电感的中心频率为2.4 GHz,符合IEEE 802.11 b / g / n标准。为了减小硅芯片尺寸,在低噪声放大器LNA电路中使用有源电感代替无源电感。该电感器通过低噪声放大器电路进行测试和分析。
提出一种全波整流变换器新型平面磁集成解决方案,将变压器和输出电感集成在一个四个柱的平面磁芯上。基于绕组节点移动技术,提出一体成型的整合绕组,解决元件之间的连接、机械强度以及散热考虑等工程现实问题。最后,成功应用在一款输出功率1450W/100A的DC-DC汽车电源。
运用磁集成技术;能够实现高频变压器与谐振电感集成。通过调整辅助绕组匝数和磁芯中气隙,使高频变压器集成电感量满足谐振电感量要求。从而解决了固定结构漏感不可调问题,实现变压器与谐振电感集成化。提高了电源功率密度,减少磁芯元件体积。
双管正激变换器结构简单,可靠性高,但是输出电流脉动大。通过磁件集成技术将变压器和电感集成为一个元件,可以有效地减小输出电流脉动。本文对推导的五种输出电流脉动及其所对应的绕组条件和磁阻条件进行了仿真和实验验证,并给出了实验的损耗分析。
本文将磁性元件绕组集成在多个磁芯组合的磁路上,称之为阵列式集成磁件。详细地分析了四磁芯结构阵列式两电感集成磁件的集成原理,分析了五种磁芯组合情况下两电感的耦合度大小,并作了有限元仿真分析验证,同时将其中对角开气隙的磁件应用于两通道交错并联变换器,仿真分析和实验结果证明了理论分析的正确性和集成磁件的实用性。组合磁芯结构由于磁芯间气隙的存在相对于传统整体磁芯降低了磁芯的集中发热点,同时增加了磁芯的散热
本文在文献[1]所提出的差共模集成滤波器的基础上,通过改变磁芯的结构对差共模集成电感进行集成,减小滤波器无源器件的体积与高度,提高磁件的利用率,为电力电子的系统集成提供技术支持。文中推导出了集成磁件的等效电路,给出了集成磁件的设计结果。最后给出了实验结果,验证了本设计的有效性。