有关“boost”的最新话题,搜索50 次
在大电流、高功率密度的要求下,交错并联技术能够减小变换器总输入输出电流纹波,但相电流纹波仍然较大,使电感元件、开关器件的损耗显著增加。通过采用耦合电感技术,能够在保证变换器瞬态响应不变同时降低电感电流纹波。本文提出组合式耦合电感的六相耦合方案,采用4个磁心实现6相电感之间的耦合。
简述了逆变器输入电流低频纹波抑制的发展与研究现状、差动Boost直流变换器型高频环节逆变器的电路拓扑, 及独立电压瞬时值反馈控制策略。分析了独立控制电压瞬时反馈控制时的输入电流,在此基础上提出了波形控制策略来抑制输入电流低频纹波方法。
本文通过介绍 SiC 材料及 SiC 功率器件特性,指出 SiC 功率器件非常适合高频、高压化。文章通过设计一台额定输入功率 5.4kW、开关频率 30kHz 的光伏 boost 变换器,分析计算 SiC-MOSFET 损耗远远低于 Si-MOSFET 和 Si-IGBT 损耗。使用 SiC-MOSFET 的光伏发电系统具有转换效率高、发电量高的优势。
可再生能源发电系统的光伏电池、燃料电池、储能电池等端口电压较低,必须依靠高增益变换器将其输出电压拉升至较高电压等级。本文通过拓扑功率重构和组合演化,提出一种新型含开关耦合电感的高增益、低纹波和高动态响应的非隔离两相交错并联型Boost变换器。
提出了带有磁集成开关电感/电容的交错并联改进型Boost直流变换器。开关电感/电容代替储能电感能够提高电压增益,输入端将开关电感/电容交错并联能够减小输入电流,将电感进行磁集成技术可以减小变换器的体积,改善变换器的输入输出纹波及动态性能,提高变换器功率密度和转换效率。
对于DCDC,大家都不陌生,因为就是开关电源,当然还有AC/DC,通常的AC/DC,都是110V或者220V交流变换为直流电源,我们这里先来讨论DCDC电源设计。
深入研究了四相Buck+Boost交错并联双向DC-DC磁集成变换器运行在Buck模式下的稳态电流纹波和暂态电流响应速度,同时研究了耦合电感的非对称性对变换器性能的影响,通过分析磁集成变换器的占空比和电感耦合系数对稳态电流纹波和暂态电流响应速度的影响。
尺寸对于耳戴式设备和可穿戴设备来说至关重要。支持小尺寸、锂离子电池供电设备的大多数PMIC还会需要其它附加器件,例如boost、buck或低压差(LDO)稳压器、充电器或用于LED显示器的电流调节器。为节省空间、提高效率,Maxim将上述功能全部集成在一起,构成完整的电源方案。
将交错并联双向 Buck/Boost 电路与全桥 LLC 谐振电路通过共用全桥开关单元集成在一起,提出了一种新型的三端口直流变换器,实现了器件共享,降低了体积和成本。该三端口变换器包括两个双向端口和一个隔离的单向输出端口,通过 PWM+PFM 的混合调制策略,可实现端口间功率流的灵活控制。
针对光伏微逆变器需要高增益 Boost 变换器的要求,为了提高传统 Boost 变换器电压增益,降低开关管电压应力,减小变换器损耗。本文提出了一种新型磁集成开关电感/开关电容单元 Boost 变换器,并利用平面磁集成技术对开关电感进行耦合设计,该变换器具有较高电压增益和低电压应力